HUP: A Heap Usage Profiling Tool for
Java Programs

User’s Manual

Michael Pan
November 20, 2001

HUP is a heap-profiling tool that allows the exploration and reduction of
heap space consumption in Java applications. The space saving is based on
the fact that some of the allocated objects not immediately used (or not used
at all) in the application code. Also, there are objects, which are no longer
in use, but remain in memory. The HUP tool allows a programmer to locate
and remove memory bottlenecks, which are caused by unused objects.

Currently, HUP has been tested on the Windows 2000 operating system
with the IBM JDK 1.3 and the Sun JDK 1.3 (classic JVM implementations).
It does not currently work with HotSpot due to bugs in HotSpot’s imple-
mentation of JVMPIL. HUP is distributed under the GNU General Public
License.

1 Installation

The HUP tool is distributed in a zip file (HUP-version.zip). In order to
install the HUP tool, unzip it into directory into which you want to install
HUP.
In order to run the HUP tool you must install the BCEL package on your
computer. The BCEL package can be downloaded from http://bcel.sourceforge.net
(choose the latest version to download). We have tested with version 4.4.1.
The HUP tool requires several environment variables to be set.

e Set the JDK_HOME to point at your JDK installation.

e Set the BCEL_HOME to point at your BCEL installation.

1

e Set the HUP_HOME to point at your HUP installation.
e Add to the PATH variable the %HUP_HOMEY\bin directory.

Before any further step, run the instrumentJDK batch file from the
JHUP_HOMEY\bin directory. The instrumentJDK instruments the Java run-
time class files from the %JDK_HOME%\1ib\rt. jar. The instrumentation does
not change the original JDK class files, but creates a copy of them, thus,
the instrumentation does not affect the execution of Java applications with
the original JDK. The instrumentJDK is a time-consuming process and may
take several minutes, but you need to run it only once.

2 Running the profiler

Now you are ready to run the HUP profiler. In order to run an application
under the HUP profiler, start the application with the hup instead of the
java executable. For example, in order to profile the application test, type
¢ “%hup defaults test’’ instead of ¢‘%java test’’. If you need to pass
parameters to the profiled application, write them after the name of the pro-
filed application. For example, ¢ ‘%hup defaults test paraml param2 ...
If you would like to pass parameters to the java executable, you need to
write them right before the name of the profiled application. For example,
¢ “%hup defaults -Xnoclassgc test’’.

The HUP tool uses -classic, -Xbootclasspath and -Xrun parameters
for the java executable. Changing these parameters could be unsafe. There
could be other runtime settings for a JVM implementation that could influ-
ence the running of the HUP tool.

HUP can be invoked with its either default configuration or its configura-
tion can be changed by setting option. In order to run HUP with the default
configuration, you must write the defaults keyword right after the hup, for
example: ¢ ‘%hup defaults test’’. Alternatively, instead of the defaults
keyword, configuration options can be specified. The options must be spec-
ified in the following format: optioni=valuel,option2=value2,... For
example, ¢ ‘%hup od=c:\test_results,sd=10 test’’. Currently available
options are:

e s0=1 - suppress HUP output during profiling.
e od=path - output directory for profiling results (default is hup_results).

e sd=depth - depth of stack trace dumps (default is 5, minimum is 0 and
maximum is 10).

| lag-time use-time Idrag—time |

allocation first-use last-use unreachable

Figure 1: The lifetime of used objects.

During profiling, HUP triggers garbage collection every 100Kb of alloca-
tion. In order to notify the user of progress, the HUP prints the [GC...]
message at each garbage collection invocation. The so option allows you to
suppress this notification.

The default output directory is created under the current directory. The
od option allows you to specify another output directory instead of the default
one. For example, ‘ ‘%hup od=c:\test_results test’’.

During profiling, HUP collects information about object allocation and
usage. Part of this information is the stack trace of the thread at which object
allocation or usage occurs. A bigger value of stack trace depth option yields
more precise information, but may significantly slow down the execution.
Under regular conditions we recommend using the default stack trace depth.

3 Result analysis

First, we introduce some definitions, which are used in the following dis-
cussion. Generally, a Java program allocates objects and GC is responsible
for collecting the objects, which are no longer in use and reclaiming their
space. However, commonly used GC algorithms do not collect all potential
garbage, rather just those objects that are no longer reachable from the root
set. For example, there are objects that are reachable from the root set at
a given point in the program and will not be used in the future. Some of
these unused, but reachable objects could be reclaimed in order to save space.
Moreover, on some occasions, we could delay the allocation of used objects,
and thereby reduce heap consumption.

The lifecycle of an object is classified as shown in Figure 1. We refer to
the time interval from the allocation time of an object until it is first used as
lag time and to the object itself as a lagged object. The time interval from
the last use of an object till it becomes unreachable is called drag time and
object itself is said to be a dragged object.

In a special case, when the object has no uses at all, we refer to the
interval between its allocation and the point it becomes unreachable as void

| void-time |

allocation unreachable

Figure 2: The lifetime of void objects.

time and the object itself as a void object, see Figure 2.

HUP measures the time in bytes allocated since the beginning of program
execution. This provides a machine independent measure of time. Observing
the size of reachable objects as function of time, we calculate the integral of
the function. We refer to this space-time integral value as the total space of
a given application. Similary, we refer to the values of the integral of lag,
drag and void size functions as total lag, drag and void space respectively.
These definitions are particularly useful for understanding the impact of the
lagged, dragged and void objects on an application heap consumption.

HUP-analysis is based on the classifications of lagged, dragged and void
objects. Specifically, the analysis classifies the objects by class, allocation
site and nested allocation site. The nested allocation-site of an object is the
call chain of methods leading to the object allocation. In other words it is
the thread stack trace at the point the object is allocated. Calling a method
from different lines of code of the same method generate different nested
allocation-sites. The allocation site of object is its nested allocation site of
depth one, or simply the method, where the object is allocated. In contrast
to the nested allocation site definition, the allocation site definition does not
distinguish between the lines of the method. The analysis calculates lag,
drag and void space for a given class, by summing the lag, drag and void
space of all instances of this class, respectively. In the same way, the analysis
calculates lag, drag and void space for allocation sites and nested allocation
sites.

Another classification of objects that is provided by HUP-analysis is based
on the differentiation of objects by their lifetime patterns. The lifetime pat-
tern is defined by the first and the last object usage stack traces. For ex-
ample, when you examine the lagged objects at a given nested allocation
site, objects with different stack traces of first uses could be identified. This
difference may point to different roles of the objects in a given program run,
even though they are allocated at the same point. In the same way, you may
explore the lifetime patterns of dragged objects.

One of the important issues is the definition of object usage. In the HUP
tool, only read operations on objects are considered object usage. We refer

1

get operations | put operations |

GETFIELD PUTFIELD
AALOAD AASTORE
BALOAD BASTORE
CALOAD CASTORE
DALOAD DASTORE
FALOAD FASTORE
IALOAD IASTORE
LALOAD LASTORE
SALOAD SASTORE
ARRAYLENGTH
INVOKEINTERFACE
INVOKESPECIAL
INVOKEVIRTUAL

CHECKCAST

INSTANCEOF

MONITORENTER
MONITOREXIT

ATHROW

Table 1: put and get operation groups.

to the read operations on an object as get operations and to the write oper-
ations on an object as put operations. Table 1 divides Java bytecodes into
put and get operation groups. In this way, the first usage that is counted by
the HUP tool can be preceded by put operations and the last usage that is
counted by the HUP tool can be followed by put operations. In order to allow
you to observe the object usage and decide for the right code transformation
for space saving, the HUP provides stack traces for both first(last) put and
get operations in lifetime patterns.

In order to begin the analysis process, invoke the analysis executable.
The directory with the profiled results should be specified in the command
line. Fot example: "%analysis c:\test_results". The HUP-analysis
loads and processes profiling results and then enters an interactive mode
in which it receives and performs user commands. In following, we describe
the currently available commands in HUP-analysis.

e help
The help command types the list of available commands.

5

write file

The write command tells the analysis to write the output of the next
command into the specified file. For example, the command "%write
c:\help.txt" followed by "%help" command will write list of the avail-
able commands into the c:\help.txt file.

stat [long]

The stat command prints the common statistics, such as the number of
classes, the number of nested allocation sites and the number of lagged,
dragged and void objects, which were determined in profiling results. It
also prints the calculated total space of a given application and its total
lag, drag and void space. The long parameter lists statistics for the
garbage collector invocations. In particular, it prints the heap space
size and the lag, drag and void space sizes for each invocation of the
garbage collector.

obj %d [long]

The obj command prints information for the object with identifier ¢d:
its class, its nested allocation site id and its lifetime pattern. The long
parameter prints the stack trace at the point of object’s allocation and
stack traces for its first and last usage.

class %d|name [long]

The class command prints class information; the class id, the cor-
responding class file name, the number of lagged, dragged and void
objects of this class and the lag, drag and void spaces, which are gen-
erated by the objects of this class. The long parameter prints the id-s
of the lagged, dragged and void objects of this class.

method <d [long]

The method command prints method information: the method id, the
method name, the corresponding class name, the number of lagged,
dragged and void objects allocated by this method and the lag, drag
and void spaces, which are generated by the objects allocated by this
method. The long parameter prints the id-s of the lagged, dragged
and void objects, which are allocated by this method.

nested ¢d [long]

The nested command prints nested allocation site information: the
nested allocation site id, the number of lagged, dragged and void ob-
jects allocated at this site and the lag, drag and void spaces, which

are generated by the objects allocated at this site. The long parame-
ter prints the id-s of the lagged, dragged and void objects, which are
allocated at this nested allocation site.

lag class [%d] [@num]

drag class [id] [@num]

void class [4d] [@num]

These commands print classes sorted by lag, drag and void respectively.
If the class id is specified, the commands print list of the nested allo-
cation sites in which objects of the specified class are allocated. The
printed list is sorted by lag, drag or void. The number of nested allo-
cated sites output can be limited by specifying the @num parameter.

lag method [%d] [Q@num]

drag method [4d] [Q@num]

void method [¢d] [@num]

These commands print methods sorted by lag, drag and void respec-
tively. If the method id is specified, the commands print list of the
nested allocation sites in which the specified method appears at the
end of the call chain of methods leading to the object allocation. The
printed list is sorted by lag, drag or void. The number of nested allo-
cated sites output can be limited by specifying the @num parameter.

lag nested [¢d] [Q@num]

drag nested [id] [@num]

void nested [2d] [@num]

These commands print nested allocation sites sorted by lag, drag and
void respectively. If the nested allocation site id is specified, the com-
mands print list of the lifetime patterns, which are found at the spec-
ified site. The printed list is sorted by lag, drag or void. Each life-
time pattern is printed with a representative object id. This id allows
you to observe the lifetime pattern’s stack traces by ¢ ‘obj <d long’’
command. The number of lifetime patterns output can be limited by
specifying the @num parameter.

exit
The exit command closes the HUP-analysis.

